Liceo Scientifico Morgagni Classe 5L – a.s. 2024/25 Programma di Matematica

prof. A. Maccati

L.Sasso, C.Zanone, Colori della matematica blu, vol.5, Petrini – DeA Scuola, Novara 2022²

Funzioni Definizione di funzione. Classificazione. Dominio. Zeri e segno. Grafico e trasformazioni geometriche. Funzioni iniettive, suriettive, biunivoche. Funzioni crescenti, decrescenti, monotòne. Funzioni periodiche. Funzioni pari e dispari. Funzione inversa. Funzione composta.

Limiti e continuità Intervalli, insiemi limitati e illimitati, maggiorante e minorante, estremo superiore e inferiore, massimo e minimo. Intorni, punti isolati e punti di accumulazione. Definizione e interpretazione geometrica dei limiti. Verifica del limite con la definizione. Limite destro e sinistro. Teoremi di unicità del limite, di permanenza del segno, del confronto. Funzioni continue e algebra dei limiti. Forme di indecisione. Limiti notevoli. Infinitesimi, infiniti e loro confronto. Principio di sostituzione. Gerarchia degli infiniti Continuità e funzione inversa. Punti singolari e loro classificazione. Teorema di Weierstrass, dei valori intermedi, di esistenza degli zeri. Asintoti verticali, orizzontali, obliqui. Grafico probabile di una funzione.

Derivate e calcolo differenziale Problema della tangente. Rapporto incrementale. Derivata di una funzione: definizione e significato geometrico. Derivata destra e sinistra. Continuità e derivabilità. Derivate fondamentali. Algebra delle derivate. Derivata della funzione composta e della funzione inversa. Punti di non derivabilità e loro classificazione. Criterio di derivabilità. Retta tangente e retta normale. Curve tangenti. Applicazioni alla fisica: velocità, accelerazione, intensità di corrente. Massimi e minimi relativi e assoluti. Concavità. Flessi. Punti di estremo relativo, punti stazionari e teorema di Fermat. Teoremi di Rolle, di Lagrange, di Cauchy. Funzioni crescenti e decrescenti, concave e convesse e derivate. Ricerca di massimi, minimi relativi e flessi con le derivate. Teorema di De L'Hospital. Problemi di ottimizzazione.

Studio di funzione Schema generale. Funzioni polinomiali, razionali fratte, irrazionali, esponenziali, logaritmiche, goniometriche, con valori assoluti. Applicazioni: discussione di un'equazione parametrica, risoluzione grafica di equazioni e disequazioni, approssimazione di una radice con il metodo di bisezione, teoremi di esistenza e unicità dello zero.

Integrali indefiniti Primitive e integrale indefinito. Curve integrali. Condizione di integrabilità. Proprietà di linearità. Integrali indefiniti immediati. Integrali con funzione composta. Integrazione per sostituzione. Integrazione per parti. Integrazioni di funzioni razionali fratte.

Integrali definiti Problema del calcolo di un'area. Trapezoide. Somma integrale inferiore e superiore. Integrale definito. Proprietà dell'integrale definito. Valore medio di una funzione e teorema della media per integrali. Funzione integrale e teorema fondamentale del calcolo integrale. Formula fondamentale del calcolo integrale. Calcolo delle aree: tra una curva e l'asse x, tra due curve, tra una curva e l'asse y. Calcolo dei volumi: di un solido di rotazione e di un solido con il metodo delle sezioni. Integrali impropri. Applicazioni alla fisica: posizione, velocità, lavoro di una forza, quantità di carica.

Roma, 3 giugno 2025

Il docente prof. Alessandro Maccati